首页> 外文OA文献 >An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations
【2h】

An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations

机译:带有保留的电动汽车共享系统的车辆和人员搬迁的集成优化仿真框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One-way electric vehicle carsharing systems are receiving increasing attention due to their mobility, environmental, and societal benefits. One of the major issues faced by the operators of these systems is the optimization of the relocation operations of personnel and vehicles. These relocation operations are essential in order to ensure that vehicles are available for use at the right place at the right time. Vehicle availability is a key indicator expressing the level of service offered to customers. However, the relocation operations, that ensure this availability, constitute a major cost component for the provision of these services. Therefore, clearly there is a trade-off between the cost of vehicle and personnel relocation and the level of service offered. In this paper we are developing, solving, and applying, in a real world context, an integrated multi-objective mixed integer linear programming (MMILP) optimization and discrete event simulation framework to optimize operational decisions for vehicle and personnel relocation in a carsharing system with reservations. We are using a clustering procedure to cope with the dimensionality of the operational problem without compromising on the quality of the obtained results. The optimization framework involves three mathematical models: (i) station clustering, (ii) operations optimization and (iii) personnel flow. The output of the optimization is used by the simulation in order to test the feasibility of the optimization outcome in terms of vehicle recharging requirements. The optimization model is solved iteratively considering the new constraints restricting the vehicles that require further charging to stay in the station until the results of the simulation are feasible in terms of electric vehicles’ battery charging levels. The application of the proposed framework using data from a real world system operating in Nice, France sheds light to trade-offs existing between the level of service offered, resource utilization, and certainty of fulfilling a trip reservation.
机译:单向电动汽车共享系统由于其机动性,环境和社会效益而受到越来越多的关注。这些系统的操作员面临的主要问题之一是人员和车辆的重新安置操作的优化。这些搬迁操作对于确保车辆在正确的时间正确的位置可用至关重要。车辆可用性是表示向客户提供服务水平的关键指标。但是,确保这种可用性的搬迁操作构成了提供这些服务的主要成本组成部分。因此,显然在车辆和人员搬迁的成本与所提供的服务水平之间需要权衡。在本文中,我们正在现实世界中开发,解决和应用集成的多目标混合整数线性规划(MMILP)优化和离散事件模拟框架,以优化具有以下特征的汽车共享系统中车辆和人员搬迁的运营决策:保留。我们正在使用聚类程序来处理操作问题的范围,而不会影响所获得结果的质量。优化框架涉及三个数学模型:(i)站点集群,(ii)运营优化和(iii)人员流。仿真的结果是优化的输出,以便根据车辆的充电要求测试优化结果的可行性。考虑到新的约束条件限制了需要进一步充电才能停留在该站中的车辆,直到仿真结果在电动车辆的电池充电水平上可行之前,该迭代模型可以迭代求解优化模型。拟议框架的应用使用了来自法国尼斯市的一个真实世界系统的数据,为所提供的服务水平,资源利用和确定旅行预订的确定性之间的折衷提供了启示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号